User Rating 0.0
Total Usage 13 times
Is this tool helpful?

Your feedback helps us improve.

About

Precise division involving decimals often trips up students and professionals alike. The primary challenge lies in the decimal point alignment. Incorrect placement changes the result by orders of magnitude. This tool eliminates that risk by automating the standard algorithm. It handles the initial decimal shift for both dividend and divisor. Users see the transformation from decimal division to integer division. This ensures the final quotient places the decimal point correctly. It serves structural engineers verifying load distributions or students mastering arithmetic concepts. The step-by-step grid exposes every subtraction and remainder.

long division decimals math solver arithmetic step-by-step

Formulas

The core principle relies on the invariant property of division when scaling by powers of 10.

a × 10kb × 10k = ab

We determine k such that the divisor becomes an integer. The long division then proceeds as:

Dividend (Divisor × QuotientDigit) = Remainder

Reference Data

TermDefinitionVisual Representation
DividendThe number being divided.12.5
DivisorThe number doing the dividing.0.5
QuotientThe result of the division.25
RemainderLeftover amount if not exact.r = 0
Shift LogicMultiplying by powers of 10.0.5 5
AlgorithmStandard Euclidean Division.a = bq + r
PrecisionDecimal places calculated.Up to 10 digits
NotationLong Division Bracket.)_____

Frequently Asked Questions

Long division algorithms traditionally require an integer divisor. Shifting the decimal point in both the divisor and dividend by the same amount keeps the ratio equivalent while simplifying the mechanical process.
The calculator stops after a predefined precision limit if the division does not terminate. It indicates if a remainder persists.
Yes. The quotient will be less than one. The tool automatically adds leading zeros and a decimal point to the result.